Substances & Homeopatic Remedies

Ictodes foetida

Requests: If you need specific information on this remedy - e.g. a proving or a case info on toxicology or whatsoever, please post a message in the Request area www.homeovision.org/forum/ so that all users may contribute.

Plant Cell Physiol. 2004 Mar;45(3):257-64.
Temperature-triggered periodical thermogenic oscillations in skunk cabbage (Symplocarpus foetidus).
Ito K, Ito T, Onda Y, Uemura M.
Cryobiosystem Research Center, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550 Japan. kikuito@iwate-u.ac.jp

The natural occurrence of temperature-triggered and light-independent thermogenic oscillation in the spadix of skunk cabbage, Symplocarpus foetidus, was discovered. The identified thermogenic oscillator had an accurate periodical cycle (ca. 60 min per cycle) that apparently responded to an increase or decrease in the spadix temperature with a threshold of less than 0.9 degrees C. Neither a constant ambient air temperature nor transient changes in the ambient air temperature within 10 min (19 degrees C --> 15 degrees C --> 19 degrees C) induced the temperature oscillation in the spadix. Moreover, the periodical cycles were independent of the weight of the spadix (2.5-9.2 g) and the amplitudes of the temperature oscillations were correlated with the magnitude of the changes in the spadix temperatures. These results imply that periodical temperature oscillations in the spadix of S. foetidus possess a quantitative regulatory process that involves a temperature sensation and subsequent heat production. Based on these results, we propose a time-dependent thermogenic oscillatory model that acts as a precise thermal regulator under dynamic environmental temperature changes.


J Eukaryot Microbiol. 1995 Sep-Oct;42(5):467-72.
Identification and partial purification of a stage-specific 33 kDa mitochondrial protein as the alternative oxidase of the Trypanosoma brucei brucei bloodstream trypomastigotes.
Chaudhuri M, Ajayi W, Temple S, Hill GC.
Division of Biomedical Sciences, Meharry Medical College, Nashville, Tennessee 37208, USA.

The glycerophosphate oxidase (GPO), the unique terminal oxidase of bloodstream trypanosome (TAO), appears to be functionally similar to the alternative oxidases of some plants and higher fungi. Immunoblotting of mitochondrial proteins of bloodstream trypomastigotes of Trypanosoma brucei with monoclonal or polyclonal antibodies to Sauromatum guttatum (voodoo lily) and Symplocarpus foetidus (skunk cabbage) alternative oxidases respectively revealed two proteins of about 33 kDa (p33) and 68 kDa (p68). These proteins are not present in procyclic trypomastigotes. Electrophoresis under rigorous denaturing conditions indicated p68 to be the dimer of p33. Indirect immunofluorescent studies of bloodstream and procyclic trypomastigotes with monoclonal antibody to plant alternative oxidase also showed the localization of 33 kDa protein in the mitochondria of the bloodstream trypomastigotes. The functional TAO activity could be solubilized efficiently from the mitochondrial membrane of the bloodstream trypomastigotes by 1% NP-40 or 10 mM lauryl maltoside. When fractionated by Superose 12 gel filtration chromatography, p33 was co-purified with the TAO enzymatic activity. The apparent molecular size of the active enzyme complex was found to be 160 kDa. Gradual disappearance of the 33 kDa protein and the TAO enzymatic activity were well correlated during in vitro differentiation of the bloodstream to procyclic trypomastigotes. This study implies that the net biosynthesis of p33, an essential subunit of TAO, is decreased during differentiation from bloodstream to procyclic trypomastigotes.


Comp Biochem Physiol B. 1989;94(2):245-51.
Trypanocidal CoQ analogues: their effect on other mitochondrial systems.
Clarkson AB Jr, Bienen EJ, Pollakis G, Grady RW.
Department of Medical and Molecular Parasitology, New York University School of Medicine, NY 10016.

1. A comparative study of compounds which inhibit the respiration of the infective form of the protozoan parasite Trypanosoma brucei brucei, such as salicylhydroxamic acid, other substituted benzhydroxamic acid, esters of 2,3- and 3,4-dihydroxybenzoic acid and structurally related compounds, showed that they have a remarkable degree of selectivity for the trypanosome as compared to rat liver mitochondria even though they are putative CoQ analogues and both respiratory systems are dependent on CoQ. 2. The minimal inhibition of mammalian mitochondrial function could not be assigned to inhibition of ubiquinone function in these mitochondria. 3. CoQ-reducing mitochondrial dehydrogenases from rat liver, trypanosomes and skunk cabbage (Symplocarpus foetidus) were insensitive to these inhibitors. 4. The alternative oxidase of skunk cabbage mitochondria was sensitive to a spectrum of trypanosome respiration inhibitors suggesting a similarity to the oxidase of the trypanosome although differing degrees of sensitivity and differing responses to alterations in the molecular structure of the inhibitors indicate that the milieu of the active sites are dissimilar.